论文标题

二维ODES中非纤维均衡的稳定指数

Stability Indices of Non-Hyperbolic Equilibria in Two-Dimensional Systems of ODEs

论文作者

Lohse, Alexander

论文摘要

我们将二维普通微分方程的系统家族与原点$ 0 $作为非纤维平衡。对于任何数字$ s \ in( - \ infty, +\ infty)$,我们表明可以在这些方程式中选择一个参数,以便稳定性指数$σ(0)$恰好是$σ(0)= s $。与此相反,对于双曲线平衡$ x $,众所周知,$σ(x)= - \ infty $或$σ(x)=+\ infty $。此外,我们讨论了一个平衡的系统,该系统在局部不稳定但在全球吸引人,突出了本地和非本地稳定性指数之间的一些细微差异。

We consider families of systems of two-dimensional ordinary differential equations with the origin $0$ as a non-hyperbolic equilibrium. For any number $s \in (-\infty, +\infty)$ we show that it is possible to choose a parameter in these equations such that the stability index $σ(0)$ is precisely $σ(0)=s$. In contrast to that, for a hyperbolic equilibrium $x$ it is known that either $σ(x)=-\infty$ or $σ(x)=+\infty$. Furthermore, we discuss a system with an equilibrium that is locally unstable but globally attracting, highlighting some subtle differences between the local and non-local stability indices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源