论文标题

关于无方向性的问题

On the Problem of Undirected st-connectivity

论文作者

Li, Shilun, Lee, Alex

论文摘要

在本文中,我们讨论了一种确定性和日志空间的无方向性st-conncontnectivity问题的算法,即Reingold在他的2008年论文“日志空间中的无向连接性”中的算法。我们进一步提供了Rozenman和Vadhan在L $中的$ \ text {ustConn} \的单独证明,并与Reingold的证明进行了讨论。已知无方向性的ST连接性是完整的,对于通过对称,非确定性,日志空间算法解决的复杂性类别的SL-问题。同样,Aleliunas等。 al。,众所周知,无向的ST连接性在RL复杂性类别内,通过随机(概率)图灵机可以解决的问题在对数空间和多项式时间内单方面误差。最后,我们的论文还表明,无方向性的ST连接性在L复杂性类别内,通过对数空间中的确定性图灵机可以解决的问题。从这个结果中引导,我们将解释为什么SL = L并讨论为什么认为RL =L。

In this paper, we discuss an algorithm for the problem of undirected st-connectivity that is deterministic and log-space, namely that of Reingold within his 2008 paper "Undirected Connectivity in Log-Space". We further present a separate proof by Rozenman and Vadhan of $\text{USTCONN} \in L$ and discuss its similarity with Reingold's proof. Undirected st-connectively is known to be complete for the complexity class SL--problems solvable by symmetric, non-deterministic, log-space algorithms. Likewise, by Aleliunas et. al., it is known that undirected st-connectivity is within the RL complexity class, problems solvable by randomized (probabilistic) Turing machines with one-sided error in logarithmic space and polynomial time. Finally, our paper also shows that undirected st-connectivity is within the L complexity class, problems solvable by deterministic Turing machines in logarithmic space. Leading from this result, we shall explain why SL = L and discuss why is it believed that RL = L.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源