论文标题

用于分割土壤和植物X射线CT图像的工作流程,并在Google中进行深度学习

A workflow for segmenting soil and plant X-ray CT images with deep learning in Googles Colaboratory

论文作者

Rippner, Devin A., Raja, Pranav, Earles, J. Mason, Buchko, Alexander, Momayyezi, Mina, Duong, Fiona, Parkinson, Dilworth, Forrestel, Elizabeth, Shackel, Ken, Neyhart, Jeffrey, McElrone, Andrew J.

论文摘要

X射线微型计算机断层扫描(X射线微观)已使以微米尺度上的植物和土壤中发生的特性和过程表征。尽管这种高级技术广泛使用,但硬件和软件的主要限制都限制了图像处理和数据分析的速度和准确性。机器学习的最新进展,特别是将卷积神经网络应用于图像分析的应用,已实现了图像数据的快速而准确的分割。然而,在将卷积神经网络应用于环境和农业相关图像的分析中仍然存在挑战。具体来说,计算机科学家和工程师,构建这些AI/ML工具的工程师与农业研究中潜在的最终用户之间存在脱节,他们可能不确定如何在其工作中应用这些工具。此外,与传统的计算系统相比,培训和应用深度学习模型所需的计算资源是独特的,对计算机游戏系统或图形设计工作更常见。为了应对这些挑战,我们开发了一个模块化工作流程,用于使用Google Colaboragoration Web应用程序中的低成本资源将卷积神经网络应用于X射线Microct图像。在这里,我们介绍了工作流的结果,说明了如何使用核桃叶,杏仁花芽和土壤骨料的示例扫描来优化参数以获得最佳结果。我们预计,该框架将加速植物和土壤科学中新兴的深度学习技术的采用和使用。

X-ray micro-computed tomography (X-ray microCT) has enabled the characterization of the properties and processes that take place in plants and soils at the micron scale. Despite the widespread use of this advanced technique, major limitations in both hardware and software limit the speed and accuracy of image processing and data analysis. Recent advances in machine learning, specifically the application of convolutional neural networks to image analysis, have enabled rapid and accurate segmentation of image data. Yet, challenges remain in applying convolutional neural networks to the analysis of environmentally and agriculturally relevant images. Specifically, there is a disconnect between the computer scientists and engineers, who build these AI/ML tools, and the potential end users in agricultural research, who may be unsure of how to apply these tools in their work. Additionally, the computing resources required for training and applying deep learning models are unique, more common to computer gaming systems or graphics design work, than to traditional computational systems. To navigate these challenges, we developed a modular workflow for applying convolutional neural networks to X-ray microCT images, using low-cost resources in Googles Colaboratory web application. Here we present the results of the workflow, illustrating how parameters can be optimized to achieve best results using example scans from walnut leaves, almond flower buds, and a soil aggregate. We expect that this framework will accelerate the adoption and use of emerging deep learning techniques within the plant and soil sciences.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源