论文标题

STICC:一种用于重复地理模式发现的多元空间聚类方法,并考虑空间连续性

STICC: A multivariate spatial clustering method for repeated geographic pattern discovery with consideration of spatial contiguity

论文作者

Kang, Yuhao, Wu, Kunlin, Gao, Song, Ng, Ignavier, Rao, Jinmeng, Ye, Shan, Zhang, Fan, Fei, Teng

论文摘要

空间聚类已被广泛用于空间数据挖掘和知识发现。理想的多元空间聚类应考虑空间连续性和天际属性。现有的空间聚类方法可能面临着在维持空间连续性的重复地理模式方面面临的挑战。在本文中,我们提出了基于空间toeplitz基于逆协方差的聚类(STICC)方法,该方法考虑了用于多元空间群集的地理对象的属性和空间关系。在执行聚类时,为每个地理对象创建一个子区域。然后构建马尔可夫随机字段以表征子区域的属性依赖性。使用空间一致性策略,鼓励附近的对象属于同一集群。为了测试所提出的sticc算法的性能,我们将其应用于两种用例。与几种基线方法的比较结果表明,在调整后的兰德指数和宏F1分数方面,STICC显着优于其他方法。还计算了JOIN计数统计量,并表明空间连续性由STICC很好地保存。这种空间聚类方法可以使地理,遥感,运输和城市规划等领域的各种应用受益。

Spatial clustering has been widely used for spatial data mining and knowledge discovery. An ideal multivariate spatial clustering should consider both spatial contiguity and aspatial attributes. Existing spatial clustering approaches may face challenges for discovering repeated geographic patterns with spatial contiguity maintained. In this paper, we propose a Spatial Toeplitz Inverse Covariance-Based Clustering (STICC) method that considers both attributes and spatial relationships of geographic objects for multivariate spatial clustering. A subregion is created for each geographic object serving as the basic unit when performing clustering. A Markov random field is then constructed to characterize the attribute dependencies of subregions. Using a spatial consistency strategy, nearby objects are encouraged to belong to the same cluster. To test the performance of the proposed STICC algorithm, we apply it in two use cases. The comparison results with several baseline methods show that the STICC outperforms others significantly in terms of adjusted rand index and macro-F1 score. Join count statistics is also calculated and shows that the spatial contiguity is well preserved by STICC. Such a spatial clustering method may benefit various applications in the fields of geography, remote sensing, transportation, and urban planning, etc.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源