论文标题

活跃的视觉热对象形状完成

Active Visuo-Haptic Object Shape Completion

论文作者

Rustler, Lukas, Lundell, Jens, Behrens, Jan Kristof, Kyrki, Ville, Hoffmann, Matej

论文摘要

对象形状完成的最新进展已仅使用视觉输入实现了令人印象深刻的对象重建。但是,由于自我封锁,重建在遮挡的物体部分中具有很高的不确定性,这会对下游机器人任务(例如握住)的性能产生负面影响。在这项工作中,我们提出了一种称为ACT-VH的主动视觉热形状完成方法,该方法可积极计算基于重建不确定性触摸对象的位置。 ACT-VH从点云重建对象,并使用IGR(最近最新的隐式表面深神经网络)计算重建不确定性。我们通过实验评估了ACT-VH对模拟和现实世界中五个基准的重建精度。我们还为此目的提出了一个新的仿真环境。结果表明,ACT-VH的表现胜过所有基线,并且不确定性驱动的触觉勘探政策比随机策略和由高斯过程隐含表面驱动的策略更高的重建精度。作为最后的实验,我们评估了ACT-VH和最佳的重建基线,以掌握10个新物体。结果表明,ACT-VH的掌握率明显高于所有对象的基线。这项工作共同为在更复杂的杂乱无章的场景中使用主动的视觉热形状完成打开了大门。

Recent advancements in object shape completion have enabled impressive object reconstructions using only visual input. However, due to self-occlusion, the reconstructions have high uncertainty in the occluded object parts, which negatively impacts the performance of downstream robotic tasks such as grasping. In this work, we propose an active visuo-haptic shape completion method called Act-VH that actively computes where to touch the objects based on the reconstruction uncertainty. Act-VH reconstructs objects from point clouds and calculates the reconstruction uncertainty using IGR, a recent state-of-the-art implicit surface deep neural network. We experimentally evaluate the reconstruction accuracy of Act-VH against five baselines in simulation and in the real world. We also propose a new simulation environment for this purpose. The results show that Act-VH outperforms all baselines and that an uncertainty-driven haptic exploration policy leads to higher reconstruction accuracy than a random policy and a policy driven by Gaussian Process Implicit Surfaces. As a final experiment, we evaluate Act-VH and the best reconstruction baseline on grasping 10 novel objects. The results show that Act-VH reaches a significantly higher grasp success rate than the baseline on all objects. Together, this work opens up the door for using active visuo-haptic shape completion in more complex cluttered scenes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源