论文标题
狄拉克场的行动波形描述及其对量子力学中的Pauli方程式形式的扣除
Traveling Wave Form Description for Dirac Field and Its Deduction To Pauli Equation Type Forms in Quantum Mechanics
论文作者
论文摘要
我们得出了狄拉克场的等效行动波形描述。在非权利论的极限中,这种形式可以降低为反式schrodinger-type方程。我们发现,由dirac场的降低的降低波动波形描述所产生的两个组件施罗宾格型方程与天真的galilean变换后的schrodinger方程不同。考虑到系统与电磁场的相互作用通过添加适当形式的协变量导数,可以在非相关主义极限中获得Pauli方程的波动波形描述。这样的描述允许人们选择涉及旋转的量子系统的任意方便参考框架。使用Bargmann-Wigner形式主义进行现场使用任意旋转$ S \ geq 1/2 $(满足其所有索引中的Dirac-type方程),例如,对于Spin-3/2 Rarita-3/2 Rarita-Schwinger Field和Spin-2 Grafitational of Spin-3/2 Rarita-3/2 Rarita-3/2 Rarita-3/2 Rarita-rarita field和Spin-2 gravitational of Spin-3/2 Rarita rarita field的波动波浪描述。
We derive an equivalent traveling wave form description for Dirac field. In the non-relativistic limit, such form can reduce to inverse-Galilean transformed Schrodinger-type equation. We find that, the resulting two-component Schrodinger-type equation from the reduction of traveling wave form description of Dirac field is different to the naive Galilean transformed Schrodinger equation. Taking into account the interactions of the system to electromagnetic field by adding proper forms of covariant derivative, the traveling wave form description for Pauli equation can be similarly obtained in the non-relativistic limit. Such descriptions allow one to choose arbitrary convenient reference frame for quantum system involving spins. Using Bargmann-Wigner formalism for field with arbitrary spin $s\geq 1/2$, which satisfy Dirac-type equations in all its indices, the traveling wave description for such a field can be similarly obtained from the traveling wave form description of Dirac field, for example, for the spin-3/2 Rarita-Schwinger field and spin-2 gravitational field.