论文标题
层合奏:分割深度学习中的单次不确定性估计
Layer Ensembles: A Single-Pass Uncertainty Estimation in Deep Learning for Segmentation
论文作者
论文摘要
由于需要安全利用AI算法在临床实践中,深度学习中的不确定性估计已成为医学图像分析的主要研究领域。大多数不确定性估计方法都需要在测试或培训多个网络期间多次采样网络权重。这会导致更高的培训和测试成本在时间和计算资源方面。在本文中,我们提出了层集合,这是一种使用单个网络的新型不确定性估计方法,仅需要单个通过即可估算网络的预测不确定性。此外,我们引入了一个图像级不确定性度量,与常用的像素指标(例如熵和方差)相比,这对分割任务更有益。我们在2D和3D,二进制和多级医学图像分割任务上评估我们的方法。我们的方法通过最新的深层合奏显示了竞争结果,只需要一个网络和一个通行证。
Uncertainty estimation in deep learning has become a leading research field in medical image analysis due to the need for safe utilisation of AI algorithms in clinical practice. Most approaches for uncertainty estimation require sampling the network weights multiple times during testing or training multiple networks. This leads to higher training and testing costs in terms of time and computational resources. In this paper, we propose Layer Ensembles, a novel uncertainty estimation method that uses a single network and requires only a single pass to estimate predictive uncertainty of a network. Moreover, we introduce an image-level uncertainty metric, which is more beneficial for segmentation tasks compared to the commonly used pixel-wise metrics such as entropy and variance. We evaluate our approach on 2D and 3D, binary and multi-class medical image segmentation tasks. Our method shows competitive results with state-of-the-art Deep Ensembles, requiring only a single network and a single pass.