论文标题
GMMG/GMG/GCFT平面全息图中最小纠缠楔形截面的分析推导
Analytic Derivation of the minimal entanglement wedge cross section in the GMMG/GCFT flat holography
论文作者
论文摘要
我们专注于适当的候选者,用于在平坦全息图中通过广义最小的大型重力(GMMG)描述的渐近平坦几何形状中的纠缠楔。为此,我们在两个分离间隔的两部分混合状态下,通过二维的伽利略形成场理论(GCFT)描述边界。我们得出了GMMG/GCFT框架中最小纠缠楔形截面(EWC)的分析表达。我们的结果提供了一个独立的推导,该推导与全息纠缠负效率的先前计算相匹配,从而提供了强大的一致性检查并验证了GMMG/GCFT框架内的两种方法。
We focus on a proper candidate for the entanglement wedge in asymptotically flat bulk geometries that are described by the generalized minimal massive gravity (GMMG) in the context of the flat holography. To this end, we describe the boundary by two dimensional Galilean conformal field theory (GCFT) at the bipartite mixed state of the two disjoint intervals. We derive an analytic expression for the minimal entanglement wedge cross section (EWCS) in the GMMG/GCFT framework. Our result provides an independent derivation that precisely matches previous computations of holographic entanglement negativity, thereby offering a powerful consistency check and validating both approaches within the GMMG/GCFT framework.