论文标题

量子设备的室温供体融合:葡萄园上的Arsine

Room temperature donor incorporation for quantum devices: arsine on germanium

论文作者

Hofmann, Emily V. S., Stock, Taylor J. Z., Warschkow, Oliver, Conybeare, Rebecca, Curson, Neil J., Schofield, Steven R.

论文摘要

锗已成为一种非常有前途的旋转型和量子信息应用的材料,与硅相比具有显着的基本优势。然而,用供体原子作为Qubits创建原子级设备的努力主要集中在硅的磷上。用原子尺度的精度将磷定位在硅中需要热量掺入退火,但是此步骤的较低成功率已证明是一个基本限制,禁止扩大大规模设备的规模。在这里,我们介绍了一项对今元(001)表面上的arsine(Ash $ _3 $)的全面研究。我们表明,与先前研究的二聚体前体或锗或锗上的任何掺杂前体不同,砷原子在室温下完全融入了替代表面晶格位置。我们的结果为下一代原子尺度供体设备铺平了道路,这些供体设备将锗的优质电子特性与arsine/encerium化学的增强性能相结合,这有望扩大到大量确定性放置的量子。

Germanium has emerged as an exceptionally promising material for spintronics and quantum information applications, with significant fundamental advantages over silicon. However, efforts to create atomic-scale devices using donor atoms as qubits have largely focussed on phosphorus in silicon. Positioning phosphorus in silicon with atomic-scale precision requires a thermal incorporation anneal, but the low success rate for this step has been shown to be a fundamental limitation prohibiting the scale-up to large-scale devices. Here, we present a comprehensive study of arsine (AsH$_3$) on the germanium (001) surface. We show that, unlike any previously studied dopant precursor on silicon or germanium, arsenic atoms fully incorporate into substitutional surface lattice sites at room temperature. Our results pave the way for the next generation of atomic-scale donor devices combining the superior electronic properties of germanium with the enhanced properties of arsine/germanium chemistry that promises scale-up to large numbers of deterministically-placed qubits.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源