论文标题
Ctlgan:与对比度转移学习的几乎没有拍摄的艺术肖像
CtlGAN: Few-shot Artistic Portraits Generation with Contrastive Transfer Learning
论文作者
论文摘要
在计算机视觉中,产生艺术肖像是一个具有挑战性的问题。产生良好质量结果的现有肖像画模型基于图像到图像的翻译,并且需要来自源和目标域的大量数据。但是,如果没有足够的数据,这些方法将导致过度拟合。在这项工作中,我们提出了CTLGAN,这是一种新的几张艺术肖像生成模型,具有新颖的对比转移学习策略。我们在源域中适应了验证的风格,以不超过10个艺术面孔的目标艺术领域。为了减少少数训练示例的过度拟合,我们引入了一种新颖的跨域三重态损失,该损失明确鼓励了从不同的潜在代码产生的目标实例,以区分。我们提出了一个新的编码器,该编码器将真实的面孔嵌入Z+空间中,并提出了双路训练策略,以更好地应对适应的解码器并消除工件。广泛的定性,定量比较和用户研究表明,我们的方法在10摄和1次设置下的最先进,并产生高质量的艺术肖像。该代码将公开可用。
Generating artistic portraits is a challenging problem in computer vision. Existing portrait stylization models that generate good quality results are based on Image-to-Image Translation and require abundant data from both source and target domains. However, without enough data, these methods would result in overfitting. In this work, we propose CtlGAN, a new few-shot artistic portraits generation model with a novel contrastive transfer learning strategy. We adapt a pretrained StyleGAN in the source domain to a target artistic domain with no more than 10 artistic faces. To reduce overfitting to the few training examples, we introduce a novel Cross-Domain Triplet loss which explicitly encourages the target instances generated from different latent codes to be distinguishable. We propose a new encoder which embeds real faces into Z+ space and proposes a dual-path training strategy to better cope with the adapted decoder and eliminate the artifacts. Extensive qualitative, quantitative comparisons and a user study show our method significantly outperforms state-of-the-arts under 10-shot and 1-shot settings and generates high quality artistic portraits. The code will be made publicly available.