论文标题

拓扑结晶绝缘子的异常晶体形状

Anomalous Crystal Shapes of Topological Crystalline Insulators

论文作者

Tanaka, Yutaro, Zhang, Tiantian, Uwaha, Makio, Murakami, Shuichi

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Understanding crystal shapes is a fundamental subject in surface science. It is now well studied how chemical bondings determine crystal shapes via dependence of surface energies on surface orientations. Meanwhile, discoveries of topological materials have led us to a new paradigm in surface science, and one can expect that topological surface states may affect surface energies and crystal facets in an unconventional way. Here we show that the surface energy of glide-symmetric topological crystalline insulators (TCI) depends on the surface orientation in a singular way via the parity of the Miller index. This singular surface energy of the TCI affects equilibrium crystal shapes, resulting in emergence of unique crystal facets of the TCI. This singular dependence of the topological surface states is unique to the TCI protected by the glide symmetry in contrast to a TCI protected by a mirror symmetry. In addition, we show that such singular surface states of the TCI protected by the glide symmetries can be realized in KHgSb with first-principles calculations. Our results provide a basis for designs and manipulations of crystal facets by utilizing symmetry and topology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源