论文标题
Adatime:时间序列数据适应域的基准测试套件
ADATIME: A Benchmarking Suite for Domain Adaptation on Time Series Data
论文作者
论文摘要
无监督的域适应方法旨在在未标记的测试数据上很好地概括与培训数据的分布不同的(移动)分布。此类方法通常是在图像数据上开发的,并且其应用于时间序列数据的应用较少。现有的时间序列域的适应性在评估方案,数据集和骨干神经网络体系结构中存在不一致之处。此外,标记的目标数据通常用于模型选择,这违反了无监督域适应的基本假设。为了解决这些问题,我们开发了一个基准测试评估套件(Adatime),以系统地和公平地评估时间序列数据的不同领域适应方法。具体而言,我们将骨干神经网络架构和基准测试数据集进行标准化,同时还探索更现实的模型选择方法,这些方法可以使用无标记的数据或仅几个标记的样本。我们的评估包括将最新的视觉域适应方法调整为时间序列数据,以及针对时间序列数据专门开发的最新方法。我们进行了广泛的实验,以评估五个跨越50个跨域场景的代表性数据集上的11种最先进方法。我们的结果表明,通过仔细选择超参数,视觉结构域适应方法具有针对时间序列域自适应的方法的竞争。此外,我们发现可以根据现实的模型选择方法选择超参数。我们的工作揭示了在时间序列数据上应用域适应方法的实用见解,并为该领域的未来工作奠定了坚实的基础。该代码可在\ href {https://github.com/emadeldeen24/adatime} {github.com/emadeldeen24/adatime}中获得。
Unsupervised domain adaptation methods aim to generalize well on unlabeled test data that may have a different (shifted) distribution from the training data. Such methods are typically developed on image data, and their application to time series data is less explored. Existing works on time series domain adaptation suffer from inconsistencies in evaluation schemes, datasets, and backbone neural network architectures. Moreover, labeled target data are often used for model selection, which violates the fundamental assumption of unsupervised domain adaptation. To address these issues, we develop a benchmarking evaluation suite (AdaTime) to systematically and fairly evaluate different domain adaptation methods on time series data. Specifically, we standardize the backbone neural network architectures and benchmarking datasets, while also exploring more realistic model selection approaches that can work with no labeled data or just a few labeled samples. Our evaluation includes adapting state-of-the-art visual domain adaptation methods to time series data as well as the recent methods specifically developed for time series data. We conduct extensive experiments to evaluate 11 state-of-the-art methods on five representative datasets spanning 50 cross-domain scenarios. Our results suggest that with careful selection of hyper-parameters, visual domain adaptation methods are competitive with methods proposed for time series domain adaptation. In addition, we find that hyper-parameters could be selected based on realistic model selection approaches. Our work unveils practical insights for applying domain adaptation methods on time series data and builds a solid foundation for future works in the field. The code is available at \href{https://github.com/emadeldeen24/AdaTime}{github.com/emadeldeen24/AdaTime}.