论文标题

双重动态治疗方案二进制结果估计

Doubly-Robust Dynamic Treatment Regimen Estimation for Binary Outcomes

论文作者

Jiang, Cong, Wallace, Michael, Thompson, Mary

论文摘要

在精确医学中,动态治疗方案(DTR)是随着时间的流逝而适应患者观察到的特征的治疗方案。 DTR是一组决策功能,它将单个患者的信息作为参数并输出要采取的措施。在观察到的数据的基础上,目的是确定优化预期患者结果的DTR。已经提出了多种方法,以进行连续结果的最佳DTR估计。但是,具有二元结果的最佳DTR估计更为复杂,并且受到相对较少的关注。解决了加权的广义估计方程系统,我们提出了一个新的平衡权重标准,以克服通用线性模型的滋扰组件的错误指定。我们构建了二进制伪外的伪造,并开发了一种双重稳定且易于使用的方法,以估计具有二元结果的最佳DTR。我们还概述了基本理论,该理论依赖于权重的平衡属性。提供模拟研究来验证我们方法的双重努力;并说明了使用烟草和健康(PATH)研究中的观察数据研究电子烟使用对戒烟的影响的方法。

In precision medicine, Dynamic Treatment Regimes (DTRs) are treatment protocols that adapt over time in response to a patient's observed characteristics. A DTR is a set of decision functions that takes an individual patient's information as arguments and outputs an action to be taken. Building on observed data, the aim is to identify the DTR that optimizes expected patient outcomes. Multiple methods have been proposed for optimal DTR estimation with continuous outcomes. However, optimal DTR estimation with binary outcomes is more complicated and has received comparatively little attention. Solving a system of weighted generalized estimating equations, we propose a new balancing weight criterion to overcome the misspecification of generalized linear models' nuisance components. We construct binary pseudo-outcomes, and develop a doubly-robust and easy-to-use method to estimate an optimal DTR with binary outcomes. We also outline the underlying theory, which relies on the balancing property of the weights; provide simulation studies that verify the double-robustness of our method; and illustrate the method in studying the effects of e-cigarette usage on smoking cessation, using observational data from the Population Assessment of Tobacco and Health (PATH) study.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源