论文标题
纤维束形态作为建模多对多地图的框架
Fiber Bundle Morphisms as a Framework for Modeling Many-to-Many Maps
论文作者
论文摘要
尽管它通常不反映在用于基准计算机学习算法的“ NICE”数据集中,但现实世界中充满了最好的过程,这些过程可以被描述为多对多。也就是说,单个输入可能会产生许多不同的输出(无论是由于噪声,不完善的测量还是在过程中的内在随机性引起的),并且许多不同的输入可以产生相同的输出(也就是说,地图不是注入性的)。例如,想象一个情感分析任务,由于语言歧义,单个语句可以具有一系列不同的情感解释,而同时许多不同的陈述可以代表相同的情感。在建模这样的多估函数$ f:x \ rightArrow y $时,对于特定输入$ x $的$ f(x)$上的分布以及Fiber $ f^{ - 1}(y)$的分布通常很有用。这样的分析可以帮助用户(i)更好地了解他们正在研究过程的固有的差异,并且(ii)了解可用于实现输出$ y $的特定输入$ x $的范围。在现有的工作使用光纤捆绑框架来更好地建模多一对一过程的现有工作之后,我们描述了纤维束的形态如何为建筑模型提供模板,这些模型自然捕获了多对多过程的结构。
While it is not generally reflected in the `nice' datasets used for benchmarking machine learning algorithms, the real-world is full of processes that would be best described as many-to-many. That is, a single input can potentially yield many different outputs (whether due to noise, imperfect measurement, or intrinsic stochasticity in the process) and many different inputs can yield the same output (that is, the map is not injective). For example, imagine a sentiment analysis task where, due to linguistic ambiguity, a single statement can have a range of different sentiment interpretations while at the same time many distinct statements can represent the same sentiment. When modeling such a multivalued function $f: X \rightarrow Y$, it is frequently useful to be able to model the distribution on $f(x)$ for specific input $x$ as well as the distribution on fiber $f^{-1}(y)$ for specific output $y$. Such an analysis helps the user (i) better understand the variance intrinsic to the process they are studying and (ii) understand the range of specific input $x$ that can be used to achieve output $y$. Following existing work which used a fiber bundle framework to better model many-to-one processes, we describe how morphisms of fiber bundles provide a template for building models which naturally capture the structure of many-to-many processes.