论文标题
在菌丝图的一般位置数字上
On the General Position Number of Mycielskian Graphs
论文作者
论文摘要
图形的一般位置问题是受离散几何形状的三个无线问题的启发。图$ g $的顶点的集合为a \ emph {一般位置集},如果$ g $中的最短路径包含$ s $的三个或多个顶点。 $ g $的\ emph {一般位置编号}是最大的一般位置集中的顶点。在本文中,我们研究了图形菌根的一般位置数量。我们在图$ g $的Mycielskian的一般位置数字上给出了紧密的上和下限,并研究了满足这些边界的图的结构。我们确切地确定了这个数字,适用于图形的常见类别,包括立方图和各种各样的树。
The general position problem for graphs was inspired by the no-three-in-line problem from discrete geometry. A set $S$ of vertices of a graph $G$ is a \emph{general position set} if no shortest path in $G$ contains three or more vertices of $S$. The \emph{general position number} of $G$ is the number of vertices in a largest general position set. In this paper we investigate the general position numbers of the Mycielskian of graphs. We give tight upper and lower bounds on the general position number of the Mycielskian of a graph $G$ and investigate the structure of the graphs meeting these bounds. We determine this number exactly for common classes of graphs, including cubic graphs and a wide range of trees.