论文标题

内在神经领域:在流形上学习功能

Intrinsic Neural Fields: Learning Functions on Manifolds

论文作者

Koestler, Lukas, Grittner, Daniel, Moeller, Michael, Cremers, Daniel, Lähner, Zorah

论文摘要

神经领域在计算机视觉社区中引起了人们的重大关注,因为它们在新型视图合成,几何重建和生成建模方面的表现出色。他们的一些优势是一个合理的理论基础,并且在当前的深度学习框架中很容易实现。尽管神经场已应用于歧管上的信号,例如,用于纹理重建,但其表示形式仅限于将形状外部嵌入到欧几里得空间中。外部嵌入忽略已知的固有歧管特性,并且僵化的WRT。传递学习功能。为了克服这些局限性,这项工作引入了固有的神经场,这是一种在流形神经场的新颖而多功能的表示。内在的神经场将神经场的优势与拉普拉斯 - 贝特拉米操作员的光谱特性相结合。从理论上讲,我们表明内在的神经场继承了外部神经场框架的许多理想特性,但表现出其他内在质量,例如等距不变性。在实验中,我们显示了内在的神经场可以从具有最先进的质量的图像中重建高保真纹理,并且对基础歧管的离散化是鲁棒的。我们通过解决各种应用来证明内在神经场的多功能性:变形形状和不同形状之间的纹理转移,来自具有视图依赖性的现实世界图像的纹理重建以及对网格和点云上的离散化敏捷性学习。

Neural fields have gained significant attention in the computer vision community due to their excellent performance in novel view synthesis, geometry reconstruction, and generative modeling. Some of their advantages are a sound theoretic foundation and an easy implementation in current deep learning frameworks. While neural fields have been applied to signals on manifolds, e.g., for texture reconstruction, their representation has been limited to extrinsically embedding the shape into Euclidean space. The extrinsic embedding ignores known intrinsic manifold properties and is inflexible wrt. transfer of the learned function. To overcome these limitations, this work introduces intrinsic neural fields, a novel and versatile representation for neural fields on manifolds. Intrinsic neural fields combine the advantages of neural fields with the spectral properties of the Laplace-Beltrami operator. We show theoretically that intrinsic neural fields inherit many desirable properties of the extrinsic neural field framework but exhibit additional intrinsic qualities, like isometry invariance. In experiments, we show intrinsic neural fields can reconstruct high-fidelity textures from images with state-of-the-art quality and are robust to the discretization of the underlying manifold. We demonstrate the versatility of intrinsic neural fields by tackling various applications: texture transfer between deformed shapes & different shapes, texture reconstruction from real-world images with view dependence, and discretization-agnostic learning on meshes and point clouds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源