论文标题

学习扩展信号插值图

Learning Expanding Graphs for Signal Interpolation

论文作者

Das, Bishwadeep, Isufi, Elvin

论文摘要

在图表上执行信号处理需要了解潜在的固定拓扑。但是,图表通常会随着时间的流逝而出现新的节点而大小,其连通性通常是未知的。因此,在冷启动建议等应用程序中,使下游任务更具挑战性。我们解决了对特定节点拓扑连接的传入节点处的信号插值的挑战。具体而言,我们为通过附件概率和边缘权重参数的传入节点提出了一个随机附件模型。我们仅依靠早期传入节点的依恋行为以插值信号值来估算这些参数。我们研究了手头问题的非跨性别性,在略微传达的情况下得出了条件,并提出了估计依恋概率和边缘权重之间的交替投影下降方法。在冷启动协作过滤中进行合成和真实数据交易的数值实验证实了我们的发现。

Performing signal processing over graphs requires knowledge of the underlying fixed topology. However, graphs often grow in size with new nodes appearing over time, whose connectivity is typically unknown; hence, making more challenging the downstream tasks in applications like cold start recommendation. We address such a challenge for signal interpolation at the incoming nodes blind to the topological connectivity of the specific node. Specifically, we propose a stochastic attachment model for incoming nodes parameterized by the attachment probabilities and edge weights. We estimate these parameters in a data-driven fashion by relying only on the attachment behaviour of earlier incoming nodes with the goal of interpolating the signal value. We study the non-convexity of the problem at hand, derive conditions when it can be marginally convexified, and propose an alternating projected descent approach between estimating the attachment probabilities and the edge weights. Numerical experiments with synthetic and real data dealing in cold start collaborative filtering corroborate our findings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源