论文标题

在n $^{3} $ ll精度和近似n $^{3} $ lo校正到半包含的dis的阈值重新召集

Threshold resummation at N$^{3}$LL accuracy and approximate N$^{3}$LO corrections to semi-inclusive DIS

论文作者

Abele, Maurizio, de Florian, Daniel, Vogelsang, Werner

论文摘要

我们将半包含的深度弹性散射(SIDIS)推进了阈值重新召集形式主义,再到接下来的次要到接头到领先的对数(n $^{3} $ ll)订单,包括三环硬因子。我们将结果扩展在强耦合中,以获取SIDIS横截面的近似近代到隔壁到领先顺序(N $^{3} $ LO)校正。在Mellin矩空间中,这些校正包括所有在阈值或恒定的对数增强的术语。我们还考虑了一组校正,这些校正被抑制接近阈值。我们的数值估计值显示了横截面的适度变化,该变化是大约n $^{3} $ lo项,这表明SIDIS过程的扰动稳定性非常好。

We advance the threshold resummation formalism for semi-inclusive deep-inelastic scattering (SIDIS) to next-to-next-to-next-to-leading logarithmic (N$^{3}$LL) order, including the three-loop hard factor. We expand the results in the strong coupling to obtain approximate next-to-next-to-next-to-leading order (N$^{3}$LO) corrections for the SIDIS cross section. In Mellin moment space, these corrections include all terms that are logarithmically enhanced at threshold, or that are constant. We also consider a set of corrections that are suppressed near threshold. Our numerical estimates show modest changes of the cross section by the approximate N$^{3}$LO terms, suggesting a very good perturbative stability of the SIDIS process.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源