论文标题

部分可观测时空混沌系统的无模型预测

Locally refined quad meshing for linear elasticity problems based on convolutional neural networks

论文作者

Chan, Chiu Ling, Scholz, Felix, Takacs, Thomas

论文摘要

在本文中,我们提出了一种使用神经网络生成适当精致的有限元网格的方法。作为模型问题,我们考虑了具有多边形边界的平面域(可能带有孔)上的线性弹性问题。我们通过固定边界的一部分的位置并在边界的另一部分施加力来施加边界条件。应力的位移和分布取决于域的几何形状和边界条件。在使用四边形有限元元素应用标准的Galerkin离散化时,通常必须进行自适应精炼以正确地解决应力分布的最大值。这样的自适应方案需要局部误差估计器和相应的本地改进策略。这种策略的总成本很高。我们建议通过训练一个神经网络来替代这种适应性改进程序,以降低获得合适的离散化的成本。我们为大型可能的域和边界条件建立了一个网络,而不是在单个感兴趣的域上。计算域和边界条件被解释为图像,这是卷积神经网络的合适输入。我们使用U-NET体系结构,并根据其整体几何复杂性将可能的输入分为不同的类别来制定培训策略。因此,我们根据几何复杂性比较了不同的培训策略。提出方法的优点之一是将输入和输出作为图像的解释,这不取决于基本的离散方案。另一个是普遍性和几何灵活性。即使具有不同的拓扑和细节水平,该网络也可以应用于以前看不见的几何形状。因此,培训很容易扩展到其他类别的几何形状。

In this paper we propose a method to generate suitably refined finite element meshes using neural networks. As a model problem we consider a linear elasticity problem on a planar domain (possibly with holes) having a polygonal boundary. We impose boundary conditions by fixing the position of a part of the boundary and applying a force on another part of the boundary. The resulting displacement and distribution of stresses depend on the geometry of the domain and on the boundary conditions. When applying a standard Galerkin discretization using quadrilateral finite elements, one usually has to perform adaptive refinement to properly resolve maxima of the stress distribution. Such an adaptive scheme requires a local error estimator and a corresponding local refinement strategy. The overall costs of such a strategy are high. We propose to reduce the costs of obtaining a suitable discretization by training a neural network whose evaluation replaces this adaptive refinement procedure. We set up a single network for a large class of possible domains and boundary conditions and not on a single domain of interest. The computational domain and boundary conditions are interpreted as images, which are suitable inputs for convolution neural networks. We use the U-net architecture and we devise training strategies by dividing the possible inputs into different categories based on their overall geometric complexity. Thus, we compare different training strategies based on varying geometric complexity. One of the advantages of the proposed approach is the interpretation of input and output as images, which do not depend on the underlying discretization scheme. Another is the generalizability and geometric flexibility. The network can be applied to previously unseen geometries, even with different topology and level of detail. Thus, training can easily be extended to other classes of geometries.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源