论文标题

多人3D姿势估计的分布感知的单阶段模型

Distribution-Aware Single-Stage Models for Multi-Person 3D Pose Estimation

论文作者

Wang, Zitian, Nie, Xuecheng, Qu, Xiaochao, Chen, Yunpeng, Liu, Si

论文摘要

在本文中,我们提出了一种新颖的分布感知单阶段(DAS)模型,用于解决具有挑战性的多人3D姿势估计问题。与现有的自上而下和自下而上的方法不同,所提出的DAS模型同时以一通方式将人位置及其相应的身体关节定位在3D摄像机空间中。这导致了一条简化的管道,并提高了效率。此外,DAS了解了身体关节的真实分布,以回归其位置,而不是将简单的Laplacian或Gaussian假设作为以前的工作。这为模型预测提供了宝贵的先验,从而提高了基于回归的方案,以实现体积基础的方案来实现竞争性能。此外,DAS利用递归更新策略来逐步实现回归目标,减轻优化难度并进一步提高回归性能。 DAS通过完全卷积的神经网络实施,并端到端学习。基准CMU Panoptic和Mupots-3D的全面实验证明了所提出的DAS模型的效率,特别是比以前的最佳模型的1.5倍速度,以及其对多人3D姿势估计的统计数据的准确性。

In this paper, we present a novel Distribution-Aware Single-stage (DAS) model for tackling the challenging multi-person 3D pose estimation problem. Different from existing top-down and bottom-up methods, the proposed DAS model simultaneously localizes person positions and their corresponding body joints in the 3D camera space in a one-pass manner. This leads to a simplified pipeline with enhanced efficiency. In addition, DAS learns the true distribution of body joints for the regression of their positions, rather than making a simple Laplacian or Gaussian assumption as previous works. This provides valuable priors for model prediction and thus boosts the regression-based scheme to achieve competitive performance with volumetric-base ones. Moreover, DAS exploits a recursive update strategy for progressively approaching to regression target, alleviating the optimization difficulty and further lifting the regression performance. DAS is implemented with a fully Convolutional Neural Network and end-to-end learnable. Comprehensive experiments on benchmarks CMU Panoptic and MuPoTS-3D demonstrate the superior efficiency of the proposed DAS model, specifically 1.5x speedup over previous best model, and its stat-of-the-art accuracy for multi-person 3D pose estimation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源