论文标题
图表表示受欢迎程度预测问题:一项调查
Graph Representation Learning for Popularity Prediction Problem: A Survey
论文作者
论文摘要
在线社交平台,例如Twitter,Facebook,LinkedIn和微信在过去十年中的发展非常快,并且是人们互相交流和共享信息的最有效平台之一。由于“口口相传”的效果,信息通常可以在这些社交媒体平台上迅速传播。因此,重要的是研究推动信息扩散的机制并量化信息传播的后果。许多努力都集中在这个问题上,以帮助我们更好地理解并在病毒营销和广告中实现更高的表现。另一方面,在过去的几年中,神经网络的发展蓬勃发展,导致大量的图表学习(GRL)模型。与传统模型相比,GRL方法通常被证明更有效。在本文中,我们对现有作品进行了全面的审查,该综述使用GRL方法用于普及性预测问题,并根据其主要使用的模型和技术将相关文献分为两个大类:基于嵌入的方法和深度学习方法。深度学习方法进一步分为六个小类:卷积神经网络,图形卷积网络,图形注意力网络,图形神经网络,复发性神经网络和增强学习。我们比较了这些不同模型的性能,并讨论了它们的优势和局限性。最后,我们概述了受欢迎程度预测问题的挑战和未来机会。
The online social platforms, like Twitter, Facebook, LinkedIn and WeChat, have grown really fast in last decade and have been one of the most effective platforms for people to communicate and share information with each other. Due to the "word of mouth" effects, information usually can spread rapidly on these social media platforms. Therefore, it is important to study the mechanisms driving the information diffusion and quantify the consequence of information spread. A lot of efforts have been focused on this problem to help us better understand and achieve higher performance in viral marketing and advertising. On the other hand, the development of neural networks has blossomed in the last few years, leading to a large number of graph representation learning (GRL) models. Compared to traditional models, GRL methods are often shown to be more effective. In this paper, we present a comprehensive review for existing works using GRL methods for popularity prediction problem, and categorize related literatures into two big classes, according to their mainly used model and techniques: embedding-based methods and deep learning methods. Deep learning method is further classified into six small classes: convolutional neural networks, graph convolutional networks, graph attention networks, graph neural networks, recurrent neural networks, and reinforcement learning. We compare the performance of these different models and discuss their strengths and limitations. Finally, we outline the challenges and future chances for popularity prediction problem.