论文标题

在由$ x^n +ax^m +b $类型定义的非单性数字字段上

On non-monogenic number fields defined by trinomials of type $x^n +ax^m+b$

论文作者

Yakkou, Hamid Ben

论文摘要

令$ k = \ q(θ)$为一个数字字段,该数字是由一个不可约束的三位一体$ f(x)= x^n+ax^{m}+b \ in \ z [x] $生成的。在本文中,我们处理了$ k $的非单据基因性问题。更确切地说,我们为$ a $,$ b $,$ n $和$ m $提供一些明确的条件,$ k $不是单基因。作为应用程序,我们表明,由$ n = 2^r \ cdot3^k $定义的无单性数字字段的无限家族,带有$ r $,$ k $是正整数。我们还提供了两个无单性数字领域的无限家族,该领域由$ 6 $ $ 6 $定义。最后,我们通过举例说明了结果。

Let $K=\Q(θ)$ be a number field generated by a complex root $þ$ of a monic irreducible trinomial $F(x) = x^n+ax^{m}+b \in \Z[x]$. In this paper, we deal with the problem of the non-monogenity of $K$. More precisely, we provide some explicit conditions on $a$, $b$, $n$, and $m$ for which $K$ is not monogenic. As application, we show that there are infinite families of non-monogenic number fields defined by trinomials of degree $n=2^r\cdot3^k$ with $r$ and $k$ are positive integers. We also give two infinite families of non-monogenic number fields defined by trinomials of degree $6$. Finally, we illustrate our results by giving some examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源