论文标题

连锁链,科赫链和点套装,带有许多三角形

Chains, Koch Chains, and Point Sets with many Triangulations

论文作者

Rutschmann, Daniel, Wettstein, Manuel

论文摘要

我们介绍了一条链的抽象概念,该链是飞机上$ n $点的序列,按$ x $ - 坐标订购,因此就三角剖分而言,连续两个点之间的边缘是不可避免的。开发了链结构特性的一般理论,同时对它们的三角形数量有了一般的理解。 我们还描述了一种有趣的新型和具体的配置,由于它与Koch曲线的相似之处,我们称之为Koch链。然后,基于科赫连锁店的特定结构显示为$ω(9.08^n)$三角形。对于$ω(8.65^n)$的先前和长期下限,对于平面点集的最大三角数量,这是一个显着的改进。

We introduce the abstract notion of a chain, which is a sequence of $n$ points in the plane, ordered by $x$-coordinates, so that the edge between any two consecutive points is unavoidable as far as triangulations are concerned. A general theory of the structural properties of chains is developed, alongside a general understanding of their number of triangulations. We also describe an intriguing new and concrete configuration, which we call the Koch chain due to its similarities to the Koch curve. A specific construction based on Koch chains is then shown to have $Ω(9.08^n)$ triangulations. This is a significant improvement over the previous and long-standing lower bound of $Ω(8.65^n)$ for the maximum number of triangulations of planar point sets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源