论文标题

部分可观测时空混沌系统的无模型预测

On the Calibration of Pre-trained Language Models using Mixup Guided by Area Under the Margin and Saliency

论文作者

Park, Seo Yeon, Caragea, Cornelia

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

A well-calibrated neural model produces confidence (probability outputs) closely approximated by the expected accuracy. While prior studies have shown that mixup training as a data augmentation technique can improve model calibration on image classification tasks, little is known about using mixup for model calibration on natural language understanding (NLU) tasks. In this paper, we explore mixup for model calibration on several NLU tasks and propose a novel mixup strategy for pre-trained language models that improves model calibration further. Our proposed mixup is guided by both the Area Under the Margin (AUM) statistic (Pleiss et al., 2020) and the saliency map of each sample (Simonyan et al.,2013). Moreover, we combine our mixup strategy with model miscalibration correction techniques (i.e., label smoothing and temperature scaling) and provide detailed analyses of their impact on our proposed mixup. We focus on systematically designing experiments on three NLU tasks: natural language inference, paraphrase detection, and commonsense reasoning. Our method achieves the lowest expected calibration error compared to strong baselines on both in-domain and out-of-domain test samples while maintaining competitive accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源