论文标题

关于FAEDO-GALERKIN近似值与躯干耦合双域模型强的T型溶液的强烈收敛

On the strong convergence of the Faedo-Galerkin approximations to a strong T-periodic solution of the torso-coupled bi-domain model

论文作者

Felipe-Sosa, Raúl, Fraguela-Collar, André, Gómez, Yofre H. García

论文摘要

在本文中,我们研究了Faedo-Galerkin近似值的收敛性,从很强的意义上讲,torso耦合的双域模型的强烈T型溶液,其中$ t $是心脏内壁激活的时期。首先,我们定义了躯干耦合的双域操作员,并证明了其工作中一些更重要的特性。之后,我们定义了与躯干耦合双域模型相关的方程式的抽象演化系统,并给出了强大解决方案的定义。我们证明Faedo-Galerkin的近似具有强大的解决方案的规律性,并且我们发现在初始条件下可以施加一些限制,因此Faedo-Galerkin的这种序列完全融合到Cauchy问题的全球强溶液中。最后,该结果用于显示存在强大的$ t $周期解决方案。

In this paper, we investigate the convergence of the Faedo-Galerkin approximations, in a strong sense, to a strong T-periodic solution of the torso-coupled bidomain model where $T$ is the period of activation of the inner wall of heart. First, we define the torso-coupled bi-domain operator and prove some of its more important properties for our work. After, we define the abstract evolution system of equations associated with torso-coupled bidomain model and give the definition of strong solution. We prove that the Faedo-Galerkin's approximations have the regularity of a strong solution, and we find that some restrictions can be imposed over the initial conditions, so that this sequence of Faedo-Galerkin fully converge to a global strong solution of the Cauchy problem. Finally, this results are used for showing the existence a strong $T$-periodic solution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源