论文标题
简短说明在几种物理环境中最简单的抗激进颂歌的外观
A short note on the appearance of the simplest antilinear ODE in several physical contexts
论文作者
论文摘要
在简短的说明中,我们回顾了几个一维问题,例如涉及线性Schroedinger方程,可变的Helmholtz方程,Zakharov-Shabat System和Kubelka-Munk方程的问题。我们表明,它们都可以简化为解决一个简单的抗线性普通微分方程$ u^{\ prime} \ left(x \ right)= f \ left(x \ right)\ edimelline {u \ left(x \ right)} $或其非均匀版本$ u^{\ prime} \ left(x \ right)= f \ left(x \ right)\ overline {u \ left(x \ right)}+g \ left(x \ right)$,$ x \ in \ in \ left(0,x_ {0} {0} \ right)我们指出拟议重新制定的一些优势,并呼吁对获得的颂歌进行进一步研究。
In this short note, we review several one-dimensional problems such as those involving linear Schroedinger equation, variable-coefficient Helmholtz equation, Zakharov-Shabat system and Kubelka-Munk equations. We show that they all can be reduced to solving one simple antilinear ordinary differential equation $u^{\prime}\left(x\right)=f\left(x\right)\overline{u\left(x\right)}$ or its nonhomogeneous version $u^{\prime}\left(x\right)=f\left(x\right)\overline{u\left(x\right)}+g\left(x\right)$, $x\in\left(0,x_{0}\right)\subset\mathbb{R}$. We point out some of the advantages of the proposed reformulation and call for further investigation of the obtained ODE.