论文标题

在\ textit {e的高通量培养中,自适应最佳推注的自适应最佳推注料的模型预测性控制和移动范围估计。大肠杆菌}

Model predictive control and moving horizon estimation for adaptive optimal bolus feeding in high-throughput cultivation of \textit{E. coli}

论文作者

Kim, Jong Woo, Krausch, Niels, Aizpuru, Judit, Barz, Tilman, Lucia, Sergio, Neubauer, Peter, Bournazou, Mariano Nicolas Cruz

论文摘要

我们讨论了非线性模型预测控制(MPC)和移动视野估计(MHE)的应用,以实现\ textit {e的最佳操作。大肠杆菌}饲喂料料,间歇性推注。在高通量微生物反应器平台中以10 mL标准考虑了24个平行实验。相关的机器人岛可以与自动处理以及在线和在线分析同行,最多可以进行48个美联储工艺。基于模型的监视和控制框架的实施表明,主要需要解决三个挑战。首先,输入以瞬时脉冲形式通过推注注射,其次,在线和在线测量频率严重不平衡,第三,对独特多个反应器进行优化,可以并行化或集成。我们通过纳入冲动控制系统的概念,通过可识别性分析制定多率MHE,并建议确定反应器配置的标准来应对这些挑战。在这项研究中,我们介绍了实施的关键要素和背景理论。

We discuss the application of a nonlinear model predictive control (MPC) and a moving horizon estimation (MHE) to achieve an optimal operation of \textit{E. coli} fed-batch cultivations with intermittent bolus feeding. 24 parallel experiments were considered in a high-throughput microbioreactor platform at a 10 mL scale. The robotic island in question can run up to 48 fed-batch processes in parallel with automated liquid handling and online and at-line analytics. The implementation of the model-based monitoring and control framework reveals that there are mainly three challenges that need to be addressed; First, the inputs are given in an instantaneous pulsed form by bolus injections, second, online and at-line measurement frequencies are severely imbalanced, and third, optimization for the distinctive multiple reactors can be either parallelized or integrated. We address these challenges by incorporating the concept of impulsive control systems, formulating multi-rate MHE with identifiability analysis, and suggesting criteria for deciding the reactor configuration. In this study, we present the key elements and background theory of the implementation with \textit{in silico} simulations for bacterial fed-batch cultivation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源