论文标题
可扩展的原位量子点控制
Memristor-based cryogenic programmable DC sources for scalable in-situ quantum-dot control
论文作者
论文摘要
基于旋转Qubit的电流量子系统由室温下低温恒温器外的经典电子设备控制。这种方法创建了一个主要的接线瓶颈,这是通向真正可扩展量子计算机的主要障碍之一。因此,我们提出了一个基于可扩展的可编程DC源,该源可用于对低温恒温器内部的量子点进行偏置(即坐姿)。这种新型的低温方法将通过对备用器的电阻进行编程,从而控制静电门上的施加电压,从而在后者中存储形成量子点的适当条件。在这项研究中,我们首先证明了基于TIO2的备注者在4.2 K处的多级电阻编程,这是实现基于Memristor的DC源的电压可调性的重要功能。然后,我们报告了基于硬件的模拟拟议直流源的电性能。在我们的实验数据上安装的基于低温TIO2的备忘录模型用于显示1 V电压范围和100个基于原位的Memristor的DC源。最后,我们模拟了双量子点的偏置,从而实现了低2分钟的原位电荷稳定性图。该演示是迈向更先进的低温应用的第一步,用于电阻性记忆,例如量子计算机的低温控制电子产品。
Current quantum systems based on spin qubits are controlled by classical electronics located outside the cryostat at room temperature. This approach creates a major wiring bottleneck, which is one of the main roadblocks toward truly scalable quantum computers. Thus, we propose a scalable memristor-based programmable DC source that could be used to perform biasing of quantum dots inside of the cryostat (i.e. in-situ). This novel cryogenic approach would enable to control the applied voltage on the electrostatic gates by programming the resistance of the memristors, thus storing in the latter the appropriate conditions to form the quantum dots. In this study, we first demonstrate multilevel resistance programming of a TiO2-based memristors at 4.2 K, an essential feature to achieve voltage tunability of the memristor-based DC source. We then report hardwarebased simulations of the electrical performance of the proposed DC source. A cryogenic TiO2-based memristor model fitted on our experimental data at 4.2 K was used to show a 1 V voltage range and 100 uV in-situ memristor-based DC source. Finally, we simulate the biasing of double quantum dots enabling sub-2 minutes in-situ charge stability diagrams. This demonstration is a first step towards more advanced cryogenic applications for resistive memories such as cryogenic control electronics for quantum computers.