论文标题

公制植物几乎产物歧管上的变分问题

Variational problem on a metric-affine almost product manifold

论文作者

Rovenski, Vladimir, Zawadzki, Tomasz

论文摘要

We study a variational problem on a smooth manifold with a decomposition of the tangent bundle into $k>2$ subbundles (distributions), namely, we consider the integrated sum of their mixed scalar curvatures as a functional of adapted pseudo-Riemannian metric (keeping the pairwise orthogonality of the distributions) and contorsion tensor, defining a linear connection.这种功能使我们从以下意义上概括了爱因斯坦指标类别:如果所有分布都是一维的,那么它与爱因斯坦 - 希尔伯特(Einstein-Hilbert)作用的几何部分相吻合,仅限于改编的指标。我们证明,对我们功能至关重要的成对度量指标使所有分布都完全脐带。在某些特殊情况下,我们获得了这些关键对存在的例子和障碍:具有统计联系的扭曲产品;半对称性连接和带有度量兼容连接的3 sasaki歧管。

We study a variational problem on a smooth manifold with a decomposition of the tangent bundle into $k>2$ subbundles (distributions), namely, we consider the integrated sum of their mixed scalar curvatures as a functional of adapted pseudo-Riemannian metric (keeping the pairwise orthogonality of the distributions) and contorsion tensor, defining a linear connection. This functional allows us to generalize the class of Einstein metrics in the following sense: if all of the distributions are one-dimensional, then it coincides with the geometrical part of the Einstein-Hilbert action restricted to adapted metrics. We prove that metrics in pairs metric-contorsion critical for our functional make all of the distributions totally umbilical. We obtain examples and obstructions to existence of those critical pairs in some special cases: twisted products with statistical connections; semi-symmetric connections and 3-Sasaki manifolds with metric-compatible connections.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源