论文标题
Superb-SG:增强的语音处理通用性能基准,用于语义和生成能力
SUPERB-SG: Enhanced Speech processing Universal PERformance Benchmark for Semantic and Generative Capabilities
论文作者
论文摘要
事实证明,转移学习对于近年来言论和自然语言处理研究的状态至关重要。在语音中,通过自我监督的学习预先训练的模型在多个任务上非常出色。但是,缺乏一致的评估方法限制了对此类模型功效的整体理解。 Superb是引入共同基准的一步,以评估各种语音任务的预训练模型。在本文中,我们介绍了Superb-SG,这是一种新的基准测试,着重于评估预训练模型的语义和生成能力,通过增加任务多样性和超级困难。我们使用轻巧的方法来测试在不同类型任务的数据域和质量变化的预训练模型所学的表示的鲁棒性。它需要冻结预训练的模型参数,仅使用特定于任务的可训练头。目标是包括所有研究人员,并鼓励有效利用计算资源。我们还表明,Superb-SG的任务多样性以及有限的任务监督是评估模型表示的普遍性的有效秘诀。
Transfer learning has proven to be crucial in advancing the state of speech and natural language processing research in recent years. In speech, a model pre-trained by self-supervised learning transfers remarkably well on multiple tasks. However, the lack of a consistent evaluation methodology is limiting towards a holistic understanding of the efficacy of such models. SUPERB was a step towards introducing a common benchmark to evaluate pre-trained models across various speech tasks. In this paper, we introduce SUPERB-SG, a new benchmark focused on evaluating the semantic and generative capabilities of pre-trained models by increasing task diversity and difficulty over SUPERB. We use a lightweight methodology to test the robustness of representations learned by pre-trained models under shifts in data domain and quality across different types of tasks. It entails freezing pre-trained model parameters, only using simple task-specific trainable heads. The goal is to be inclusive of all researchers, and encourage efficient use of computational resources. We also show that the task diversity of SUPERB-SG coupled with limited task supervision is an effective recipe for evaluating the generalizability of model representation.