论文标题

诱导的子图和树分解IV。 (甚至孔,钻石,金字塔) - 无图形

Induced subgraphs and tree decompositions IV. (Even hole, diamond, pyramid)-free graphs

论文作者

Abrishami, Tara, Chudnovsky, Maria, Hajebi, Sepehr, Spirkl, Sophie

论文摘要

图$ g $中的一个孔是一个长度至少四个的诱发周期,一个均匀的孔是一个均匀长度的孔。钻石是从完整图$ k_4 $中获得的图形,通过删除边缘。金字塔是一个由称为基座的三角形组成的图,一个称为顶点的顶点,三个内部不相交的路径从顶点开始,否则是不相交的,否则每个都将顶点连接到底座的顶点。对于一个家庭$ \ MATHCAL {H} $的图形,我们说图$ g $是$ \ MATHCAL {H} $ - 如果没有$ g $的诱导子图对$ \ Mathcal {H} $的成员都是同构的,则免费。卡梅隆,达·席尔瓦,黄和Vušković证明了(甚至无孔,三角形)最多具有五个,这激励着研究较大集团数量的无孔图的树宽。 Sintiari和Trotignon提供了(甚至是孔,金字塔,$ k_4 $)的结构 - 任意大宽的免费图。 在这里,我们表明,对于每$ t $(甚至是孔,金字塔,钻石,$ k_t $) - 免费图具有界限的树宽。 Sintiari和Trotignon构建的图形包含钻石,因此,如果我们不排除钻石,我们的结果是错误的。实际上,我们的主要结果是更笼统的是,树宽是在不包括某些车轮和三个路径配置,钻石和固定完整图的图中界定的。该证明使用“非交叉分解”方法,类似于本系列中以前论文中的方法。但是,在以前的论文中,有限程度是证明有界树宽的必要条件。本文的结果是第一个使用“非交叉分解”方法证明在无界最大程度的图类别中证明有界树宽的方法。

A hole in a graph $G$ is an induced cycle of length at least four, and an even hole is a hole of even length. The diamond is the graph obtained from the complete graph $K_4$ by removing an edge. A pyramid is a graph consisting of a triangle called the base, a vertex called the apex, and three internally disjoint paths starting at the apex and disjoint otherwise, each joining the apex to a vertex of the base. For a family $\mathcal{H}$ of graphs, we say a graph $G$ is $\mathcal{H}$-free if no induced subgraph of $G$ is isomorphic to a member of $\mathcal{H}$. Cameron, da Silva, Huang, and Vušković proved that (even hole, triangle)-free graphs have treewidth at most five, which motivates studying the treewidth of even-hole-free graphs of larger clique number. Sintiari and Trotignon provided a construction of (even hole, pyramid, $K_4$)-free graphs of arbitrarily large treewidth. Here, we show that for every $t$, (even hole, pyramid, diamond, $K_t$)-free graphs have bounded treewidth. The graphs constructed by Sintiari and Trotignon contain diamonds, so our result is sharp in the sense that it is false if we do not exclude diamonds. Our main result is in fact more general, that treewidth is bounded in graphs excluding certain wheels and three-path-configurations, diamonds, and a fixed complete graph. The proof uses "non-crossing decompositions" methods similar to those in previous papers in this series. In previous papers, however, bounded degree was a necessary condition to prove bounded treewidth. The result of this paper is the first to use the method of "non-crossing decompositions" to prove bounded treewidth in a graph class of unbounded maximum degree.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源