论文标题
PNM:用于一般图像分割的像素空模型
PNM: Pixel Null Model for General Image Segmentation
论文作者
论文摘要
图像分割中的一个主要挑战是对对象边界进行分类。最近的努力建议通过边界面具完善分割结果。但是,即使模型正确捕获对象轮廓,模型仍然容易分类边界像素。在这种情况下,即使是完美的边界图也无助于细分细化。在本文中,我们认为将适当的先前权重分配给容易出错的像素(例如对象边界)可以显着提高细分质量。具体来说,我们介绍\ textIt {pixel null模型}(pnm),这是一个先前的模型,可根据每个像素的概率加权每个像素的概率,该模型被随机分段器正确分类。经验分析表明,PNM捕获了不同最先进(SOTA)细分器的错误分类分布。在三个数据集(CityScapes,ADE20K,MS COCO)上进行语义,实例和跨综合分段任务的广泛实验证实,PNM始终如一地将大多数SOTA方法的分割质量(包括视觉变压器)的分割质量提高,并且基于边界的方法却大大略高于边界方法。我们还观察到,广泛使用的平均值(miou)度量对不同清晰度的边界不敏感。作为副产品,我们提出了一个新的度量标准,即\ textit {pnm iou},它可以感知边界清晰度,并更好地反映在容易出错的区域中的模型分割性能。
A major challenge in image segmentation is classifying object boundaries. Recent efforts propose to refine the segmentation result with boundary masks. However, models are still prone to misclassifying boundary pixels even when they correctly capture the object contours. In such cases, even a perfect boundary map is unhelpful for segmentation refinement. In this paper, we argue that assigning proper prior weights to error-prone pixels such as object boundaries can significantly improve the segmentation quality. Specifically, we present the \textit{pixel null model} (PNM), a prior model that weights each pixel according to its probability of being correctly classified by a random segmenter. Empirical analysis shows that PNM captures the misclassification distribution of different state-of-the-art (SOTA) segmenters. Extensive experiments on semantic, instance, and panoptic segmentation tasks over three datasets (Cityscapes, ADE20K, MS COCO) confirm that PNM consistently improves the segmentation quality of most SOTA methods (including the vision transformers) and outperforms boundary-based methods by a large margin. We also observe that the widely-used mean IoU (mIoU) metric is insensitive to boundaries of different sharpness. As a byproduct, we propose a new metric, \textit{PNM IoU}, which perceives the boundary sharpness and better reflects the model segmentation performance in error-prone regions.