论文标题
全球经典解决方案,用于具有库仑力和有界域中的带有库仑力和滑动边界条件的三维压缩等等磁性微极流体方程
Global classical solution for three-dimensional compressible isentropic magneto-micropolar fluid equations with Coulomb force and slip boundary condition in bounded domains
论文作者
论文摘要
我们研究了具有库仑力的三维(3D)可压缩磁性磁性 - 微极性流体方程的初始值问题,并在一个有限的简单连接域中,其边界的边界数量有限的二维连接组件。我们得出了经典解决方案的全球存在和独特性,只要最初的总能量很小。我们的结果概括了可压缩的Navier-Stokes方程与库仑力的问题(J.微分方程269:8468---8508,2020)和可压缩的MHD方程(Siam J.Math。45:1356--1387,20AM),尽管有限的域名是由许多由许多表面整体造成的界限,但限制了许多型界面。本文的主要成分是克服由库仑力,磁场,磁场和微粒旋转效应引起的强大非线性,并基于涉及速度和微旋转速度的有效粘性通量基于有效的粘性通量,并基于有效的粘性通量。
We study an initial-boundary value problem of three-dimensional (3D) compressible isentropic magneto-micropolar fluid equations with Coulomb force and slip boundary conditions in a bounded simply connected domain, whose boundary has a finite number of two-dimensional connected components. We derive the global existence and uniqueness of classical solutions provided that the initial total energy is suitably small. Our result generalizes the Cauchy problems of compressible Navier-Stokes equations with Coulomb force (J. Differential Equations 269: 8468--8508, 2020) and compressible MHD equations (SIAM J. Math. Anal. 45: 1356--1387, 2013) to the case of bounded domains although tackling many surface integrals caused by the slip boundary condition are complex. The main ingredient of this paper is to overcome the strong nonlinearity caused by Coulomb force, magnetic field, and rotation effect of micro-particles by applying piecewise-estimate method and delicate analysis based on the effective viscous fluxes involving velocity and micro-rotational velocity.