论文标题
探索客户价格偏好和产品利润在推荐系统中的作用
Exploring Customer Price Preference and Product Profit Role in Recommender Systems
论文作者
论文摘要
推荐系统域中的大多数研究都集中在基于历史数据(例如平均平均精度(MAP)或召回率之类的历史数据)的优化上。但是,研究与行业之间存在差距,因为企业的主要主要绩效指标(KPI)是收入和利润。在本文中,我们探讨了操纵推荐系统的利润意识的影响。普通的电子商务业务通常不使用复杂的推荐算法。我们建议对基于分数的推荐系统进行预测的排名调整,并探索从时尚领域的两个行业数据集对利润和客户的价格偏好的影响。在实验中,我们显示了提高精度和生成建议的利润的能力。当电子商务增加利润并获得更有价值的建议时,这种结果代表了双赢的情况。
Most of the research in the recommender systems domain is focused on the optimization of the metrics based on historical data such as Mean Average Precision (MAP) or Recall. However, there is a gap between the research and industry since the leading Key Performance Indicators (KPIs) for businesses are revenue and profit. In this paper, we explore the impact of manipulating the profit awareness of a recommender system. An average e-commerce business does not usually use a complicated recommender algorithm. We propose an adjustment of a predicted ranking for score-based recommender systems and explore the effect of the profit and customers' price preferences on two industry datasets from the fashion domain. In the experiments, we show the ability to improve both the precision and the generated recommendations' profit. Such an outcome represents a win-win situation when e-commerce increases the profit and customers get more valuable recommendations.