论文标题

广义的键值内存,以灵活调整内存增强网络中的冗余

Generalized Key-Value Memory to Flexibly Adjust Redundancy in Memory-Augmented Networks

论文作者

Kleyko, Denis, Karunaratne, Geethan, Rabaey, Jan M., Sebastian, Abu, Rahimi, Abbas

论文摘要

内存增强的神经网络增强了具有外部键值内存的神经网络,其复杂性通常由密钥内存中的支持向量数量主导。我们提出了一个广义的键值内存,该内存通过引入一个可以任意添加或删除冗余的免费参数来将其尺寸与支持向量的数量脱离。实际上,它提供了额外的自由度,可以灵活地控制鲁棒性与存储和计算广义键值内存所需的资源之间的权衡。这对于实现内存计算硬件的关键内存特别有用,在该硬件中利用非理想但非常有效的非挥发存储器设备来进行密集的存储和计算。实验结果表明,根据需求,适应此参数可有效缓解高达44%的非理想性,同样精确度和设备数量,而无需神经网络再培训。

Memory-augmented neural networks enhance a neural network with an external key-value memory whose complexity is typically dominated by the number of support vectors in the key memory. We propose a generalized key-value memory that decouples its dimension from the number of support vectors by introducing a free parameter that can arbitrarily add or remove redundancy to the key memory representation. In effect, it provides an additional degree of freedom to flexibly control the trade-off between robustness and the resources required to store and compute the generalized key-value memory. This is particularly useful for realizing the key memory on in-memory computing hardware where it exploits nonideal, but extremely efficient non-volatile memory devices for dense storage and computation. Experimental results show that adapting this parameter on demand effectively mitigates up to 44% nonidealities, at equal accuracy and number of devices, without any need for neural network retraining.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源