论文标题

二维系统中横向挠性电解的注释

A note on transversal flexoelectricity in two-dimensional systems

论文作者

Codony, David, Arias, Irene, Suryanarayana, Phanish

论文摘要

在最近的一封信中[物理学。莱特牧师。 127,216801(2021)],作者介绍了有效的挠性系数$μ^\ textrm {2d} $,用于量化2D系统中的flexoelectric效果,并报告了与flexoelectric系数$μ____\ text {t} $ cof in Ref in Ref Ref的挠性系数$μ__\ text {t} $。 [物理。修订版5,l030801(2021)],归因于公制项$φ^\ text {m} $的忽视 - 未渗透的电荷密度的四极矩 - 在提出参考文献中。 [物理。修订版5,L030801(2021)]。在这里,我们证明了参考文献中的模型。 [物理。修订版5,L030801(2021)]是正确的,并且在参考文献中是一致的。 [物理。莱特牧师。 127,216801(2021)]。由于其定义的差异,出现了系数数值的差异:$μ__\ textrm {t} $测量弯曲诱导的平面极化的变化,而$μ^\ textrm {2d} $测量限制了借入触发的Voltage polttage跨2D系统的变化。

In a recent letter [Phys. Rev. Lett. 127, 216801 (2021)], the authors introduced the effective flexoelectric coefficient $μ^\textrm{2D}$ for quantifying the flexoelectric effect in 2D systems, and reported a disagreement with the flexoelectric coefficient $μ_\text{T}$ introduced in Ref. [Phys. Rev. Mat. 5, L030801 (2021)], attributed to the neglect of the metric term $φ^\text{M}$ -- quadrupolar moment of the unperturbed charge density -- in the formulation of Ref. [Phys. Rev. Mat. 5, L030801 (2021)]. Here, we show that the model in Ref. [Phys. Rev. Mat. 5, L030801 (2021)] is correct and is in agreement with that in Ref. [Phys. Rev. Lett. 127, 216801 (2021)]. The discrepancies in the numerical values of the coefficients arise due to the difference in their definitions: $μ_\textrm{T}$ measures changes in bending-induced out-of-plane polarization, whereas $μ^\textrm{2D}$ measures changes in bending-induced voltage drop across the 2D system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源