论文标题

加速使用高斯过程和神经网络加速宇宙学 - 应用于LSST Y1弱透镜和星系聚类的应用

Accelerating cosmological inference with Gaussian processes and neural networks -- an application to LSST Y1 weak lensing and galaxy clustering

论文作者

Boruah, Supranta S., Eifler, Tim, Miranda, Vivian, M, Sai Krishanth P.

论文摘要

研究系统效应的影响,优化调查策略,评估不同探针之间的紧张局势以及探索不同数据集的协同作用需要大量的模拟似然分析,每个分析都花费了数千个CPU小时。在本文中,我们提出了一种基于高斯过程回归和神经网络的模拟器加速宇宙论断的方法。我们迭代地在高后概率区域中获取训练样本,即使在高维参数空间中,也可以准确地模仿数据向量。我们通过对LSST-Y1进行模拟的3x2点分析来展示模拟器的性能,并具有现实的理论和系统学建模。我们表明,我们的仿真器会导致高保真的后部轮廓,并具有速度的速度。最重要的是,训练有素的模拟器可以重复使用,以进行极快的影响和优化研究。我们通过研究LSST-Y1 3x2点分析中的Baryonic物理效应来证明这一功能,其中每个MCMC运行大约需要5分钟。该技术使未来的宇宙学分析能够将科学回报映射为分析选择和调查策略的函数。

Studying the impact of systematic effects, optimizing survey strategies, assessing tensions between different probes and exploring synergies of different data sets require a large number of simulated likelihood analyses, each of which cost thousands of CPU hours. In this paper, we present a method to accelerate cosmological inference using emulators based on Gaussian process regression and neural networks. We iteratively acquire training samples in regions of high posterior probability which enables accurate emulation of data vectors even in high dimensional parameter spaces. We showcase the performance of our emulator with a simulated 3x2 point analysis of LSST-Y1 with realistic theoretical and systematics modelling. We show that our emulator leads to high-fidelity posterior contours, with an order of magnitude speed-up. Most importantly, the trained emulator can be re-used for extremely fast impact and optimization studies. We demonstrate this feature by studying baryonic physics effects in LSST-Y1 3x2 point analyses where each one of our MCMC runs takes approximately 5 minutes. This technique enables future cosmological analyses to map out the science return as a function of analysis choices and survey strategy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源