论文标题
关于羊毛蛋白锥及其弦乐$ e $ unctions的注释
A note on affine cones over Grassmannians and their stringy $E$-functions
论文作者
论文摘要
我们计算了格拉曼尼亚蛋糕上载体的刺激性$ e $ - 功能。如果格拉斯曼尼亚不是一个投射空间,那么它的锥体就不会承认毛茸茸的解决方案。尽管如此,有时是多项式的弦乐$ e $ - 功能是多项式,并且在这种情况下,圆锥体接纳了非交易性的毛发分辨率。这就提出了一个问题,即非交换性毛皮剂的存在是否意味着弦乐$ e $ unction是多项式的。
We compute the stringy $E$-function of the affine cone over a Grassmannian. If the Grassmannian is not a projective space then its cone does not admit a crepant resolution. Nonetheless the stringy $E$-function is sometimes a polynomial and in those cases the cone admits a noncommutative crepant resolution. This raises the question as to whether the existence of a noncommutative crepant resolution implies that the stringy $E$-function is a polynomial.