论文标题

无线动态的深度学习

Deep Learning for Wireless Dynamics

论文作者

Lee, Heunchul, Jeong, Jaeseong, Wang, Zhao

论文摘要

本文旨在通过从通道观测中深入学习,不了解基础通道动力学,可以通过深入学习来预测无线电通道的变化。在下一代宽带细胞系统中,用于较高数据速率的多载波传输导致高分辨率预测问题。通过利用高分辨率图像处理中深度学习的最新进展,我们提出了一种纯粹的数据驱动深度学习(DL)方法来预测宽带无线电通道的高分辨率时间演变。为了研究建筑设计选择的效果,我们使用UNET开发和研究了三种深度学习预测模型,即基线,图像完成和下一框架预测模型。数值结果表明,所提出的DL方法的预测误差比基于卡尔曼滤波器(KF)的传统方法低52%。为了量化通道老化和预测对预编码性能的影响,我们还评估了由于过时和预测的通道状态信息(CSI)而与完美的CSI相比,由于过时和预测的频道状态信息(CSI)。我们的模拟表明,提出的DL方法可以通过将预编码向量调整为无线电通道的变化,而传统的KF方法仅显示27%的降低,因此提出的DL方法可以减少频道老化引起的性能损失。

This paper aims to predict radio channel variations over time by deep learning from channel observations without knowledge of the underlying channel dynamics. In next-generation wideband cellular systems, multicarrier transmission for higher data rate leads to the high-resolution predicting problem. By leveraging recent advances of deep learning in high-resolution image processing, we propose a purely data-driven deep learning (DL) approach to predicting high-resolution temporal evolution of wideband radio channels. In order to investigate the effect of architectural design choices, we develop and study three deep learning prediction models, namely, baseline, image completion, and next-frame prediction models using UNet. Numerical results show that the proposed DL approach achieves a 52% lower prediction error than the traditional approach based on the Kalman filter (KF) in mean absolute errors. To quantify impact of channel aging and prediction on precoding performance, we also evaluate the performance degradation due to outdated and predicted channel state information (CSI) compared to perfect CSI. Our simulations show that the proposed DL approach can reduce the performance loss due to channel aging by 71% through adapting precoding vector to changes in radio channel while the traditional KF approach only shows a 27% reduction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源