论文标题

广义的特特拉克近似C* - 代数

Generalized Tracially Approximated C*-algebras

论文作者

Elliott, George A., Fan, Qingzhai, Fang, Xiaochun

论文摘要

在本文中,我们介绍了一些广义曲折近似类别$ {\ rm c^*} $ - 代数。考虑一个$ \ Mathcal {z} $的unital $ {\ rm c^*} $ - 代数 - 吸收(或最多具有tracial核尺寸,或最多具有tracial核尺寸,或者拥有属性$ \ rm sp $,或者是$ m $ m $ - 最大的分区)。然后,$ a $是trac上是$ \ mathcal {z} $ - 吸收(分别吸收(分别具有曲折的核维度),对于任何简单的unital $ {\ rm c^*} $ - algebra $ a $ in comperiatiand of the property($ n,m $)的属性是薄弱的($ n,m $) - 几乎是分解的) C^*} $ - 代数。作为一个应用程序,让$ a $为无限尺寸的Unital简单$ {\ rm c^*} $ - 代数,让$ b $是$ a $的集中大型sibalgebra。如果$ b $是特殊的$ \ mathcal {z} $ - 吸收,则$ a $是特克萨利亚$ \ mathcal {z} $ - 吸收。该结果由Archey,Buck和Phillips在\ cite {ajn}中获得。

In this paper, we introduce some classes of generalized tracial approximation ${\rm C^*}$-algebras. Consider the class of unital ${\rm C^*}$-algebras which are tracially $\mathcal{Z}$-absorbing (or have tracial nuclear dimension at most $n$, or have the property $\rm SP$, or are $m$-almost divisible). Then $A$ is tracially $\mathcal{Z}$-absorbing (respectively, has tracial nuclear dimension at most $n$, has the property $\rm SP$, is weakly ($n, m$)-almost divisible) for any simple unital ${\rm C^*}$-algebra $A$ in the corresponding class of generalized tracial approximation ${\rm C^*}$-algebras. As an application, let $A$ be an infinite-dimensional unital simple ${\rm C^*}$-algebra, and let $B$ be a centrally large subalgebra of $A$. If $B$ is tracially $\mathcal{Z}$-absorbing, then $A$ is tracially $\mathcal{Z}$-absorbing. This result was obtained by Archey, Buck, and Phillips in \cite{AJN}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源