论文标题
HDL:在数字双胞胎中合成心肌速度图的混合深度学习用于心脏分析
HDL: Hybrid Deep Learning for the Synthesis of Myocardial Velocity Maps in Digital Twins for Cardiac Analysis
论文作者
论文摘要
基于医疗数据的合成数字双胞胎加速了数字医疗保健中的获取,标签和决策程序。数字医疗双胞胎的核心部分是基于模型的数据综合,它允许生成逼真的医学信号,而无需应对解剖学和生化现象的建模复杂性,从而在现实中产生它们。不幸的是,到目前为止,在文献中几乎没有研究心脏数据合成算法。心脏检查中的重要成像方式是三个方向的多片多板心肌速度映射(3DIR MVM),它在左心室的三个正交方向上提供了对心脏运动的定量评估。漫长的获取时间和复杂的获取农产品使产生这种成像方式的合成数字双胞胎变得更加迫切。在这项研究中,我们提出了一个混合深度学习(HDL)网络,尤其是对于合成3DIR MVM数据。我们的算法由带有前景生成方案的混合动力UNET和生成的对抗网络提供。实验结果表明,从时间下降的幅度的Cine图像(六次)中,我们提出的算法仍然可以成功合成高时间分辨率3DIR MVM CMR数据(PSNR = 42.32),具有精确的左心室分割(DICE = 0.92)。这些性能得分表明,我们提出的HDL算法可以在现实世界的数字双胞胎中实现,以用于心肌速度映射数据模拟。据我们所知,这项工作是研究3DIR MVM CMR的数字双胞胎的第一部作品,该作品通过合成的心脏数据显示了提高临床研究效率的巨大潜力。
Synthetic digital twins based on medical data accelerate the acquisition, labelling and decision making procedure in digital healthcare. A core part of digital healthcare twins is model-based data synthesis, which permits the generation of realistic medical signals without requiring to cope with the modelling complexity of anatomical and biochemical phenomena producing them in reality. Unfortunately, algorithms for cardiac data synthesis have been so far scarcely studied in the literature. An important imaging modality in the cardiac examination is three-directional CINE multi-slice myocardial velocity mapping (3Dir MVM), which provides a quantitative assessment of cardiac motion in three orthogonal directions of the left ventricle. The long acquisition time and complex acquisition produce make it more urgent to produce synthetic digital twins of this imaging modality. In this study, we propose a hybrid deep learning (HDL) network, especially for synthetic 3Dir MVM data. Our algorithm is featured by a hybrid UNet and a Generative Adversarial Network with a foreground-background generation scheme. The experimental results show that from temporally down-sampled magnitude CINE images (six times), our proposed algorithm can still successfully synthesise high temporal resolution 3Dir MVM CMR data (PSNR=42.32) with precise left ventricle segmentation (DICE=0.92). These performance scores indicate that our proposed HDL algorithm can be implemented in real-world digital twins for myocardial velocity mapping data simulation. To the best of our knowledge, this work is the first one in the literature investigating digital twins of the 3Dir MVM CMR, which has shown great potential for improving the efficiency of clinical studies via synthesised cardiac data.