论文标题
均衡作为非权威主义自旋统计联系的基础
Parity as the foundation of the non-relativistic spin-statistics connection
论文作者
论文摘要
结果表明,在三个空间维度中,在两个空间维度中具有任意自旋$ s $的波形均衡的对称性是针对粒子排列下适当的波函数交换统计量的。非偏好性量子力学中角动量的标准特性解释了符号因子$(-1)^{2S} $,这些波函数在两个粒子的坐标中获得的波置量获得了,而没有任何其他要求,无需任何其他要求,直接与旋转和粒子交换统计量有关。
It is shown that the symmetry under parity of the wavefunctions of two identical particles with an arbitrary spin $s$ in three spatial dimensions accounts for the appropriate wavefunction exchange statistics under the permutations of particles. The standard properties of the angular momentum in non-relativistic quantum mechanics account for the sign factor $(-1)^{2s}$ that the wavefunctions acquire under the permutation of coordinates of the two particles, without any additional requirements, directly relating spin and the particle exchange statistics in the non-relativistic context.