论文标题

内存增强的深层展开网络,用于指导图像超分辨率

Memory-augmented Deep Unfolding Network for Guided Image Super-resolution

论文作者

Zhou, Man, Yan, Keyu, Pan, Jinshan, Ren, Wenqi, Xie, Qi, Cao, Xiangyong

论文摘要

指导图像超分辨率(GISR)旨在通过在HR图像的指导下增强低分辨率(LR)目标图像的空间分辨率来获得高分辨率(HR)目标图像。但是,以前的基于模型的方法主要将整个图像归为整体,并假定HR目标图像和HR指导图像之间的先前分布,只是忽略了它们之间的许多非本地共同特征。为了减轻此问题,我们首先提出了GISR的最大后验(MAP)估计模型,其中有两种类型的人力资源目标图像,即局部隐含的先验和全局隐式先验。本地隐式先验的目的是从本地角度对HR目标图像与HR指南图像之间的复杂关系进行建模,而全局隐式先验则考虑了两个图像之间的非本地自动回归属性,从全局角度来看。其次,我们设计了一种新颖的交替优化算法来为GISR解决该模型。该算法是一个简洁的框架,该框架有助于将其复制到常用的深层网络结构中。第三,为了减少跨迭代阶段的信息丢失,引入了持久的内存机制来增加信息表示,通过在图像和特征空间中利用长短期内存单元(LSTM)。这样,建立了具有一定解释和高度表示能力的深层网络。广泛的实验结果验证了我们方法在各种GISR任务上的优越性,包括泛滥,深度图像超分辨率和MR图像超级分辨率。

Guided image super-resolution (GISR) aims to obtain a high-resolution (HR) target image by enhancing the spatial resolution of a low-resolution (LR) target image under the guidance of a HR image. However, previous model-based methods mainly takes the entire image as a whole, and assume the prior distribution between the HR target image and the HR guidance image, simply ignoring many non-local common characteristics between them. To alleviate this issue, we firstly propose a maximal a posterior (MAP) estimation model for GISR with two types of prior on the HR target image, i.e., local implicit prior and global implicit prior. The local implicit prior aims to model the complex relationship between the HR target image and the HR guidance image from a local perspective, and the global implicit prior considers the non-local auto-regression property between the two images from a global perspective. Secondly, we design a novel alternating optimization algorithm to solve this model for GISR. The algorithm is in a concise framework that facilitates to be replicated into commonly used deep network structures. Thirdly, to reduce the information loss across iterative stages, the persistent memory mechanism is introduced to augment the information representation by exploiting the Long short-term memory unit (LSTM) in the image and feature spaces. In this way, a deep network with certain interpretation and high representation ability is built. Extensive experimental results validate the superiority of our method on a variety of GISR tasks, including Pan-sharpening, depth image super-resolution, and MR image super-resolution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源