论文标题
$ \ ell_0下的二进制分类,用于一般噪声分布的攻击
Binary Classification Under $\ell_0$ Attacks for General Noise Distribution
论文作者
论文摘要
由于数据中的少量扰动会导致重大的性能降解,因此在机器学习领域,对抗性示例最近引起了机器学习领域的关注。这种现象通常是由恶意对手建模的,该恶意对手可以以约束的方式对数据进行扰动,例如在某个规范中受到限制。在本文中,当对手受到$ \ ell_0 $ norm的约束时,我们研究了这个问题;即,它可以在输入中扰动一定数量的坐标,但对这些坐标的影响没有限制。由于这种设置的组合性质,我们需要超越强大的机器学习中的标准技术来解决此问题。我们考虑了二进制分类方案,其中$ d $ noisy数据样本在对抗扰动后向我们提供了。我们介绍了一种使用称为截断的非线性组件的分类方法,并在渐近场景中显示,只要对手仅限于扰动不超过$ \ sqrt {d} $数据样本,我们几乎可以在不存在对手的情况下实现最佳分类误差,即我们可以完全中性地效应。令人惊讶的是,我们观察到一种相位过渡,从某种意义上说,使用匡威参数,我们表明,如果对手可以扰动超过$ \ sqrt {d} $坐标,那么任何分类器都能做得比随机猜测更好。
Adversarial examples have recently drawn considerable attention in the field of machine learning due to the fact that small perturbations in the data can result in major performance degradation. This phenomenon is usually modeled by a malicious adversary that can apply perturbations to the data in a constrained fashion, such as being bounded in a certain norm. In this paper, we study this problem when the adversary is constrained by the $\ell_0$ norm; i.e., it can perturb a certain number of coordinates in the input, but has no limit on how much it can perturb those coordinates. Due to the combinatorial nature of this setting, we need to go beyond the standard techniques in robust machine learning to address this problem. We consider a binary classification scenario where $d$ noisy data samples of the true label are provided to us after adversarial perturbations. We introduce a classification method which employs a nonlinear component called truncation, and show in an asymptotic scenario, as long as the adversary is restricted to perturb no more than $\sqrt{d}$ data samples, we can almost achieve the optimal classification error in the absence of the adversary, i.e. we can completely neutralize adversary's effect. Surprisingly, we observe a phase transition in the sense that using a converse argument, we show that if the adversary can perturb more than $\sqrt{d}$ coordinates, no classifier can do better than a random guess.