论文标题

预测轻度认知障碍转化为阿尔茨海默氏病

Predicting conversion of mild cognitive impairment to Alzheimer's disease

论文作者

Wei, Yiran, Price, Stephen J., Schönlieb, Carola-Bibiane, Li, Chao

论文摘要

阿尔茨海默氏病(AD)是最常见的与年龄相关的痴呆症。轻度认知障碍(MCI)是AD前认知能力下降的早期阶段。预测MCI至AD转换以进行精确管理至关重要,由于患者的多样性,这仍然具有挑战性。先前的证据表明,通过扩散MRI产生的大脑网络有望使用深度学习对痴呆进行分类。但是,扩散MRI的可用性有限挑战模型培训。在这项研究中,我们开发了一种自制的对比学习方法,以在扩散MRI的指导下从常规解剖学MRI中产生结构性脑网络。生成的大脑网络用于训练学习框架,以预测MCI至AD转换。我们没有直接对广告脑网络进行建模,而是训练图形编码器和变异自动编码器,以对健康控制脑网络的健康衰老轨迹进行建模。为了预测MCI至AD转换,我们进一步设计了一种基于神经网络的方法,以模拟患者脑网络与健康衰老轨迹的纵向偏差。数值结果表明,所提出的方法在预测任务中优于基准。我们还可视化模型解释以解释预测并确定白质区的异常变化。

Alzheimer's disease (AD) is the most common age-related dementia. Mild cognitive impairment (MCI) is the early stage of cognitive decline before AD. It is crucial to predict the MCI-to-AD conversion for precise management, which remains challenging due to the diversity of patients. Previous evidence shows that the brain network generated from diffusion MRI promises to classify dementia using deep learning. However, the limited availability of diffusion MRI challenges the model training. In this study, we develop a self-supervised contrastive learning approach to generate structural brain networks from routine anatomical MRI under the guidance of diffusion MRI. The generated brain networks are applied to train a learning framework for predicting the MCI-to-AD conversion. Instead of directly modelling the AD brain networks, we train a graph encoder and a variational autoencoder to model the healthy ageing trajectories from brain networks of healthy controls. To predict the MCI-to-AD conversion, we further design a recurrent neural networks based approach to model the longitudinal deviation of patients' brain networks from the healthy ageing trajectory. Numerical results show that the proposed methods outperform the benchmarks in the prediction task. We also visualize the model interpretation to explain the prediction and identify abnormal changes of white matter tracts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源