论文标题
由于忽视轨道偏心率而导致一般相对性的参数化测试的系统偏见
Systematic bias on parameterized tests of general relativity due to neglect of orbital eccentricity
论文作者
论文摘要
引力波观测为在该理论的强场和高度动态的状态中测试一般相对论(GR)提供了独特的机会。 GR的参数化测试是一种量化违反GR的众所周知的方法。这种方法限制了牛顿后阶段公式的系数的偏差,它描述了紧凑型二元的引力波相的演变,因为它启发了它。使用Ligo/处女座观测来实现该测试的电流边界假设二进制文件在进入检测器频带时会循环。在这里,我们研究了残留二进制偏心率对参数化测试的影响。当使用基于圆形轨道假设的相分化的系统用于具有较小残留偏心率的系统时,我们研究了参数范围的系统偏见。我们发现,系统偏见(例如,在领先的牛顿变形参数上)与$ \ sim 0.04 $的统计误差相当,即$ 10 $ hz的Ligo/pirgo Band in Biary Black Boles的$ 10 $ HZ,而$ \ sim 0.008 $ \ sim 0.008 $ 0.008 $。这在第三代(3G)探测器的频带(例如宇宙探险家)的频带($ \ sim 0.005 $ at By Binary Black holes的$ 10 $ hz)和二进制中性二进制中子星的$ \ sim 0.002 $ $ 10 $ hz等频段中发生了这种情况。这些结果表明,在波形模型中纳入诸如偏心率之类的物理效应对于准确从未来探测器中提取科学结果很重要。
Gravitational-wave observations provide a unique opportunity to test general relativity (GR) in the strong-field and highly dynamical regime of the theory. Parametrized tests of GR are one well-known approach for quantifying violations of GR. This approach constrains deviations in the coefficients of the post-Newtonian phasing formula, which describes the gravitational-wave phase evolution of a compact binary as it inspirals. Current bounds from this test using LIGO/Virgo observations assume that binaries are circularized by the time they enter the detector frequency band. Here, we investigate the impact of residual binary eccentricity on the parametrized tests. We study the systematic biases in the parameter bounds when a phasing based on the circular orbit assumption is employed for a system that has some small residual eccentricity. We find that a systematic bias (for example, on the leading Newtonian deformation parameter) becomes comparable to the statistical errors for even moderate eccentricities of $\sim 0.04$ at $10$ Hz in LIGO/Virgo band for binary black holes, and $\sim 0.008$ for binary neutron stars. This happens at even lower values of orbital eccentricity in the frequency band of third-generation (3G) detectors like Cosmic Explorer ($\sim 0.005$ at $10$ Hz for binary black holes and $\sim 0.002$ for binary neutron stars). These results demonstrate that incorporating physical effects like eccentricity in waveform models is important for accurately extracting science results from future detectors.