论文标题
部分可观测时空混沌系统的无模型预测
Equilibrium-Independent Stability Analysis for Distribution Systems with Lossy Transmission Lines
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Power distribution systems are becoming much more active with increased penetration of distributed energy resources. Because of the intermittent nature of these resources, the stability of distribution systems under large disturbances and time-varying conditions is becoming a key issue in practical operations. Because the transmission lines in distribution systems are lossy, standard approaches in power system stability analysis do not readily apply and the understanding of transient stability remains open even for simplified models. This paper proposes a novel equilibrium-independent transient stability analysis of distribution systems with lossy lines. We certify network-level stability by breaking the network into subsystems, and by looking at the equilibrium-independent passivity of each subsystem, the network stability is certified through a diagonal stability property of the interconnection matrix. This allows the analysis scale to large networked systems with time-varying equilibria. The proposed method gracefully extrapolates between lossless and lossy systems, and provides a simple yet effective approach to optimize control efforts with guaranteed stability regions. Case studies verify that the proposed method is much less conservative than existing approaches and also scales to large systems.