论文标题

在符号和荒地极性空间的大部分卵形上

On large partial ovoids of symplectic and Hermitian polar spaces

论文作者

Ceria, Michela, De Beule, Jan, Pavese, Francesco, Smaldore, Valentino

论文摘要

在本文中,我们提供了构造性的下限,以符合性极性空间$ {\ cal w}(3,q)$,$ q $ q $ q \ q \ odd \ equiv 0 \ equiv 0 \ equiv 0 \ equiv 0 \ pmod {3} $,$ {3} $,$ {\ cal w}(5,q)$ and s $ spel cal cal(cal) $ q $偶数或$ q $奇数方,$ q \ not \ equiv 0 \ pmod {3} $,$ {\ cal h}(6,q^2)$,$ {\ cal H}(8,q^2)$。

In this paper we provide constructive lower bounds on the sizes of the largest partial ovoids of the symplectic polar spaces ${\cal W}(3, q)$, $q$ odd square, $q \not\equiv 0 \pmod{3}$, ${\cal W}(5, q)$ and of the Hermitian polar spaces ${\cal H}(4, q^2)$, $q$ even or $q$ odd square, $q \not\equiv 0 \pmod{3}$, ${\cal H}(6, q^2)$, ${\cal H}(8, q^2)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源