论文标题
连接复合物谎言组的线性化合物的结构
The structure of the linearizer of a connected complex Lie group
论文作者
论文摘要
Morimoto定理指出,每个连接的Abelian Complex Lie Group $ a $都可以分解为一个组的直接乘积,在该组的直接乘积上,所有Holomorphic函数都是恒定的,有限的许多副本为$ \ Mathbb {C}^\ times $和vector Group。我们证明,如果$ a $是连接的复杂谎言组的复杂线性化器,那么产品的最后一个因素是微不足道的。
The Morimoto theorem states that each connected abelian complex Lie group $A$ can be decomposed into the direct product of a group on which all holomorphic functions are constant, finitely many copies of $\mathbb{C}^\times$ and a vector group. We prove that if $A$ is the complex linearizer of a connected complex Lie group then the last factor of the product is trivial.