论文标题

一个可溶解的3D近代晶格,表现出​​奇数配对和秩序分数化

A solvable 3D Kondo lattice exhibiting odd-frequency pairing and order fractionalization

论文作者

Coleman, Piers, Panigrahi, Aaditya, Tsvelik, Alexei

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The Kondo lattice model plays a key role in our understanding of quantum materials, but a lack of small parameters has posed a long-standing problem. We present a 3 dimensional S= 1/2 Kondo lattice model describing a spin liquid within an electron sea. Strong correlations in the spin liquid are treated exactly, enabling a controlled analytical approach. Like a Peierls or BCS phase, a logarithmically divergent susceptibility leads to an instability into a new phase at arbitrarily small Kondo coupling. Our solution captures a plethora of emergent phenomena, including odd-frequency pairing, pair density wave formation and order fractionalization. The ground-state state is a pair density wave with a fractionalized charge e, S = 1/2 order parameter, formed between electrons and Majorana fermions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源